INNOVATIONS IN HEMATOLOGY: SHAPING THE FUTURE OF DIAGNOSIS AND TREATMENT

HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

The AGM of ISHBT during Haematocon-2025 welcomed new president and gave away awards to the best performers

> **RIGADIER Dr Tathagat Chatterjee took over** the presidentship of Indian Society of Haematology and Blood Transfusion (ISHBT) from current chairperson of Prof Sarmila Chandra on the penultimate day of Haematocon-2025.

Addressing the annual general body meeting on Saturday, Dr Chatterjee, who has vast exposure attending international symposiums and experience in the field of hematology assured that he would strive to take ISHB to a new height.

ISHBT Secretary Prof Tuphan Kanti Dolai informed the ISHBT AGM about various activities of the society and narrated as to how ISHBT has grown leaps and bounds in recent years. Prof Dolai said ISHBT's life membership has increased by 137 from 2202 to 2339.

The AGM discussed taking the quiz competitions to undergraduate level after its spectacular success post doctoral and post graduate level.

AGM thanked Prof SP Verma for smooth conduct of

the Hematocon-2025 at Lucknow with registration in the annual event touching 1,500. Dr Ankit Khurana, organizing secretary of Haematocon-2026, briefed about progress of the event which is going to be held

Prof RK Jena, secretary Indian College of Haematology, academic wing of ISHBT, briefed about ICH's activities. ICH Guidelines on Thalassemia was released on this occasion. ICH zonal council members were elected uncontested.

Dr. Sreejesh Sreedharanunni of PGIMER, was presented Dr KC Das memorial award for best published

article in any national and international journal. Dr Puja Choudhary was given the Dr DN Das best paper award for the best original paper published in IJHBT and the best reviewer award went to Dr Dibyajyoti Sahoo, Dr Ankasha Garg and Dr Rashi Garg. Dr Mallesh Dhanush was given best research paper award while Dr Abatar Kishan Ganju was presented the member with valuable contributions to society membership.

The best faculty of masterclass was won by Dr Rakhee Kar. The best DM/DrNB award went to Dr Namrata Kaul of PGIMER and Dr Amiya Ranjan Nayak of Bagchi Sri Shankara Cancer Centre and Research Institute, Odisha. The best local chapter award was won by Varanasi Haematology Group.

The winner of Quiz for PG and PDT along with Dr JC Patel best paper award will be given away at the valedictory session on Sunday.

CALL FOR ACTION

Professionals, research, innovation and delivery is the way forward

NDIAN Society of Haematology and Blood Transfusion (ISHBT) has now completed more than than 50 years of its challenging journey as the sole national scientific society in hematology. The annual conference of the society provides a platform for all professionals in the field to come together and discuss recent advances in diagnosis and management of haematological disorders.

The past 25 years have witnessed tremendous advancement in the training and fellowship programmes including DM Clinical Hematology/Hematopathology as well as DrNB Doctorate programmes of

BRIG (DR) TATHAGATA CHATTERJEE

President ISHBT (Nov 25-Nov 26)

NBE in Hematology. This has increased the specialist cadre in hematology and improved the prospects of this subject nationally catering to the professional needs of patients with haematological diseases. However, we need more of such specialist in our country and for this robust awareness programmes are the need of the hour.

Research in hematol-

ogy has to be taken more seriously now. Collaborative projects with scientific institutes of excellence is the need of the hour. We must have MOUs with top institutes like IITs, NCCS(Pune), DIPAS(Delhi), IIS(Bangalore) in the fields of nanotechnology, cell sciences and molecular biology, proteomics and Artificial intelligence.

A strong committee must be formed to implement DM Hematopathology in NEET-SS exams so that appointments of Hematopathologist can be created in departments of Pathology in various medical col-

We must also go all out to increase the number of life members of our society to at least 5000 in the next two years. This is a realistic target and all of us must share this responsibility.

I take this opportunity to thank all the respected members of our society for giving me the privilege to be Executive body member in the past and now the President Elect of ISHBT this year. I assure you of my hard work and dedication that will bring laurels to the society.

Long live ISHBT. Jai Hind!

6TH - 9TH NOVEMBER, 2025 ● HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

Metabolic targeting platelets key to combat thrombosis

ic pathways and cell signaling plays a crucial role in numerous biological processes, including innate and adaptive immunity, cancer development and inflammation. Although studies of platelet bioenergetics suggest metabolic flexibility, the specific contributions of metabolic regulation to platelet activation and thrombosis remain poorly understood.

Pyruvate kinase M2 (PKM2), a key regulator of aerobic glycolysis, supports lactate production and metabolic reprogramming in cells. Our research demonstrates that restricting the formation of PKM2 dimers using the small molecule ML265 suppresses lactate production and glucose uptake in activated human and mouse platelets. This inhibition also impairs platelet activation, aggregation, and thrombus formation under arterial shear conditions in vitro.

Mechanistically, limiting PKM2 dimerization leads to downregulation of PI3K-Akt/ GSK3 signaling in both human and murine platelets. In proof-of-concept experiments, mice with platelet-specific PKM2 deficiency showed reduced agonist-induced platelet activation, aggregation, and PI3K-Akt/GSK3 signaling, and were less prone to arterial thrombosis in FeCl3-induced carotid and

PROF ANIL K CHAUHAN Division of Hematology/ Oncology, University of Iowa, US

New findings

highlight a

for PKM2 in

regulating

metabolism.

signaling, and

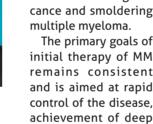
platelet

treated with ML265 showed resistance to arterial thrombosis without changes in tail bleeding times. In a venous thrombosis model (IVC stenosis), both PKM2-deficient mice and ML265-treated wild-type mice had a significantly lower thrombus burden 48 hours post-surgery compared to controls.

This reduction correlated with lower levels of citrullinated histone H3 (CitH3), a marker of neutrophil extracellular traps (NETs), and improved IVC wall contractility. Mechanistic studies revealed that thrombi stimulated platelets from either PKM2-deficient mice or ML265-treated wild-type mice had reduced SNAP23 phosphorylation and PF4 release, indicating impaired α-granule

The releasates from these platelets also had diminished capacity to induce NETosis. Furthermore, human whole blood treated with ML265 and perfused over a tissue factor-coated surface at venous shear rates showed significantly reduced platelet-leukocyte aggregate formation. Consistent with murine results, ML265-treated human platelets stimulated with thrombin exhibited reduced PF4 release and generated releasates that were less effective at triggering NETosis.

These findings highlight a central role for PKM2 in regulating platelet metabolism, signaling, and function in both arterial and venous thrombosis, identifying it as a promising therapeutic target for antithrombotic interventions without affecting normal he-


function in laser-induced mesenteric artery injury both arterial models. and venous Notably, this occurred without affecting normal hemostasis. Similarly, wild-type mice

How I manage newly diagnosed multiple myeloma in 2025?

HE treatment of multiple myeloma (MM) has significantly changed over the past decade with the introduction of several new therapies and the development of highly effective and novel combinations that have led to deep and durable responses in patients with newly diagnosed myeloma.

While autologous stem cell transplantation (ASCT) has remained an integral component of myeloma therapy strategy, there has been increasing convergence in terms of the initial regimens for treatment of MM. An accurate diagnosis and risk stratification remains the cornerstone of myeloma therapy, especially the accurate classification and distinguishing

> active myeloma from precursor phases of the disease such as monoclonal gammopathy of undetermined signifimultiple myeloma.

responses, reversal of

disease related compli-

cations, limit the impact of initial therapy on the ability to collect stem cell transplant and achieve all these goals with minimal toxicity using a treatment that is best adapted for the individual patients.

DR SHAJI KUMAR

Professor of Medicine

and Consultant at the

Mayo Clinic, US

The treatment selection for MM is primarily driven by two important factors-the risk characteristics or biological aggressiveness of the disease that often dictates how intense a treatment that we hope to deliver for the patient and the patient frailty that determines how intense a therapy the patient can tolerate. Phase three trials over the past year few years have consistently demonstrated improved outcomes with the use of multidrug combinations that incorporates A proteasome inhibitor, immunomodulatory drug and an anti CD38 monoclonal antibody. These regimens have demonstrated improved outcomes in both transplant eligible as well as those considered ineligible for transplant if the patients have functional status that allows them to receive a 4-drug combination with its increased toxicity.

The current approach to treatment of myeloma involves assessment of the disease risk primarily using genomic markers as with the newly proposed IMS MWG risk stratification and also considering other risk factors that have been described in this disease along with the formal assessment of the frailty status.

Based on this the patients should be started on a 4-drug combination or in case there is concern about tolerability start with a 3 or 2 drug combination and gradually escalate as tolerated

Mechanistic basis of anemia

NARLA **New York Blood Center**

NEMIA is a major global health problem affecting nearly 2 billion individuals. Significant research efforts have focused and continue to be focused on defining the mechanistic basis of anemia. The major factors that contribute to anemia are extravascular hemolysis due to decreased red cell lifespan, intravascular hemolysis due to complement activation and decreased red cell production due to ineffective erythropoiesis in the bone marrow. These distinct mechanisms individually or in combination are responsible for anemia in various human disorders.

Anemia due to decreased red cell lifespan is a major contributor to anemia in red cell membrane disorders, enzymopathies such as G6PD- and PK-deficiencies and hemoglobinopathies including sickle cell disease. Com-

plement mediated-intravascular hemolysis is a major feature of anemia in PNH while ineffective erythropoiesis is a significant contributor to anemia in thalassemia, Diamond-Blackfan anemia and myelodysplasia.

In my presentation I dealt on the laboratory diagnosis including genetic analysis and treatment options for inherited red cell membrane disorders including hereditary spherocytosis, hereditary elliptocytosis, Southeast-Asian ovalocytosis, hereditary xerocytosis and hereditary hydrocytosis.

NUAL CONFERENCE OF INDIAN SOCIETY OF HAEMATOLOGY & BLOOD TRANSFUSION 6TH - 9TH NOVEMBER, 2025 ● HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

J B CHATTERJEA ORATION

Sickle Cell Disease: The past, present and the future

ICKLE Cell Disease (SCD) arises due to a mutation in the HBB gene (CAG → GTG), resulting in a single amino acid substitution in the ß-globin chain at the 6th position (ß6Glu → Val). This simple genetic "misspelling" leads to profound clinical variability, making SCD one of the greatest enigmas of medical science. Distinct haplotypes like Senegal, Benin, Bantu and Arab-Indian exhibit remarkable differences in pathophysiology and phenotype. The Arab-Indian haplotype is predominantly observed in India.

The first case of SCD in India was reported in the Nilgiri Hills

of Tamil Nadu by Lehman and Cutbush (1952), followed by

reports from Odisha (Dr. Bijaya Nanda, 1967) and Gujarat

(Dr. Yazdi Italia, 1978). Despite being identified over 70

years ago, SCD has long suffered from neglect. Hydroxyurea

(HU), approved in 1998, remains the only reliable, cost-

Several Indian clinicians and scientists have made pio-

neering contributions to SCD research, including Dr BC

Kar, Dr D Patel and Dr Pradeep Patra (Burla, Odisha); Dr PK

Patra (Chhattisgarh); Dr Yazdi Italia (Gujarat)and Dr Dipika

Mohanty, Dr Roshan Kolah, Dr Manisha Madkaikar, Dr Heena

The National Health Mission (NHM) launched Sickle Cell

Control Programmes in Maharashtra (2006), Gujarat (2006),

Cell Disease held in Bhubaneswar (21–24 February 2017).

This event brought together experts from the Sickle Global

Network, ICMR, DBT, NGOs, and various Ministries of the

The advocacy team of ISHBT including Dr TK Dolai, Dr HP

Pati, Dr Maitreyee Bhattacharyya, Dr Manoranjan Mahapatra

including myself played a pivotal role in sensitizing poli-

cymakers, including Shri Arjun Munda, Hon'ble Minister for

Tribal Affairs, about the magnitude of SCD in India and the

During Haematocon 2022 (Kolkata), the ICH-ICMR

need for a National Control Programme.

effective disease-modifying therapy available.

Tabassum (ICMR)

and Odisha (2010).

Government of India.

PROF RK JENA Secretary, ICH & EHG Past-President ISHBT

Guidelines on the Management of SCD were released. Discussions among ministers, ISHBT, and ASH representatives (Dr Narla Mohan Das and Dr Alexis Thompson, President Elect and President of ASH) reinforced the urgency of a national mission. This culminated in a historic moment on

1st July 2023, when the Hon'ble Prime Minister of India Shri Narendra Modi launched the National Sickle Cell Anaemia Elimination Mission (NSCAEM), with clear objectives, strategic pillars, and dedicated budgetary support. Under this mission, ICMR was directed to prioritize SCD research, including the development of novel therapies.

The program covers 17 high-burden states and includes capacity-building workshops in collaboration with ISHBT

Odisha's model has emerged as a national benchmark, adopting innovative, community-level technologies such as Microchip Electrophoresis (Gazelle) and Dried Blood Spot-HPLC under a public-private partnership model. This approach ensures cost-effectiveness, sustainability, and accuracy in detecting all hemoglobinopathies (Sickle, Thalassemia, HbE) in a single test. As a result, Odisha reported the highest prevalence in India (Homozygous 1.98%, Trait 7.8%, total ≈10% of the population)

Community-based research by Dr Bontha V Babu (ICMR, Delhi) has also highlighted the significant social stigma associated with SCD and led to the development of an ICMR Stigma Scale and practical recommendations for stigma

A major milestone was the 3rd Global Congress on Sickle

Patie wareness Programme

Several new therapies are under development like Sailin-HbS (AYUSH product), Oral Decitabine and Etavopivat. A Phase I/II Gene Therapy trial is currently underway in India. Unmet needs in SCD management include strengthened healthcare infrastructure and manpower, Model Day Care Centres providing holistic one-window care, Stigma reduction strategies, development of new, accessible drugs and expansion of PND and BMT facilities

The ICH-ICMR Roadmap for SCD in India provides a strategic framework emphasizing identification, accessibility,

efficiency, quality, safety, equity, and empowerment.

CONFERENCE GLIMF

BULLETIN

DAY

Challenges in management of aplastic anemia

PLASTIC anemia (AA) is a rare but potentially fatal condition with bone marrow failure characterised by pancytopenia and a hypocellular marrow. Though uncommon globally, its prevalence is significantly higher in Asia, including India. The exact reason for the increased prevalence of AA in India is not known. High incidence of AA in India has been linked to lower socio-economic status. At All India Institute of Medical Sciences (AIIMS), Delhi we usually see around

300-500 new cases of AA annually.

MAHAPATRA Professor and Head Department of Hematology at AIIMS.

Once considered uniformly fatal, its prognosis has dramatically improved over the past two decades owing to refined diagnostic modalities, advances in immunosuppressive therapy (IST), wider applicability of hematopoietic stem cell transplantation (HSCT). The management of AA is undergoing a paradigm shift, moving toward

individualized therapy based upon genetics, molecular risk markers, and donor avail-

The challenges in Management of AA in developing countries including India are plenty, which include - long interval between disease onset to diagnosis and from diagnosis to treatment, infections present in majority of patients at the time of diagnosis, lack of standard of care (only 20-30 percent of patients receive HSCT or ATG), cost of therapy and socioeconomic issues and lack of patient support mechanisms.

Although the supportive care facilities have significantly improved over the years, the above mentioned challenges are the major barriers for successful outcome of aplastic anemic patients in developing countries. The definitive management of AA include Allogenic hematopoietic stem cell transplant (HSCT) and immunosuppressive therapy (IST) including anti-thymocyte globulin with Cyclosporine-A. The integration of Eltrombopag, an oral TPO-RA, into first-line IST is a recent development in management of AA.

Aplastic anemia management is undergoing transformative evolution. In both adult and pediatric populations, the management of aplastic anemia requires a combination of accurate diagnosis, timely definitive therapy, and meticulous supportive care. With refining of immunosuppressive therapy (IST), growing experience with haplo-HSCT, and refined diagnostics enabling accurate classification, aplastic anemia has become a largely curable disease, if diagnosed and treated early.

BULLETIN

Platelet refractoriness: diagnosis and treatment

LATELET refractoriness is a significant clinical challenge commonly encountered in hematology and transfusion medicine. It refers to a poor post-transfusion platelet count increment following at least two consecutive platelet transfusions. Identifying the cause of refractoriness and instituting appropriate corrective measures are crucial

for ensuring effective patient care. The diagnosis of platelet refractoriness is primarily based on the Corrected Count Increment (CCI), which assesses the rise in platelet count after transfusion relative to the number of platelets administered. A one-hour CCI of less than 7,500 to 10,000 generally suggests an immune-mediated cause, while a 24-hour CCI of less than 5,000 indicates non-immune factors. Alternatively, the Percent Platelet Recovery (PPR) can also be used, with values below 20 percent confirming refractoriness. Non-immune causes account for nearly 60 to 80 percent of all cases and are often transient or reversible. These include sepsis, fever, bleeding, disseminated intravascular coagulation (DIC), splenomegaly, medications such as amphotericin B, vancomycin, or heparin, bone marrow suppression, chemotherapy or radiotherapy, graft-versus-host disease, and poor platelet storage or ABO incompatibility. Immune causes, seen in about 20 to 40

percent of cases, are due to alloantibodies directed against

HLA class I antigens, human platelet antigens (HPA), ABO

antigens, or rarely, drug-dependent antibodies.

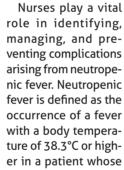
DR SUDHA SETHY Head, Dept of Clinical Hematology, SCB Medical College, Cuttack, Odisha

A stepwise diagnostic approach is recommended. First, inadequate platelet increments should be confirmed by measuring post-transfusion counts at one and 24 hours. Next, non-immune factors must be ruled out by assessing for infection, fever, splenomegaly, bleeding, DIC, or concurrent medications. If these are excluded, immune causes should be investigated using HLA antibody screening, HPA antibody testing, and platelet crossmatching to identify compatible donors.

Management focuses on addressing the underlying cause. Treating infections, controlling bleeding, stopping causative drugs, and optimizing transfusion timing are key in non-immune cases. For immune-mediated refractoriness, the best options are HLAmatched or crossmatch-compatible platelets. **HPA-matched and ABO-identical platelets** may also be used when available. In severe or refractory cases, therapies like intravenous immunoglobulin, immunosuppressive treatment, or continuous platelet infusion can be considered. Preventive strategies such as minimizing unnecessary transfusions, using leukoreduced platelet products, and preferring single-donor apheresis platelets help reduce alloimmunization and recurrence.

As platelet refractoriness is a multifactorial condition four steps are essential (a) Confirm inadequate CCI (b) Exclude non-immune

causes (c) Identify immune causes and provide matched platelets, and (4) Use preventive measures like leukoreduction to reduce recurrence.



Neutropenic fever: Key role of nurses in tackling complication

EUTROPENIC fever is a critical condition in patients with low neutrophil counts, often seen in haematology patients undergoing chemotherapy or those with haematological malignancies. Understanding its implications is essential for providing effective care and to reduce morbidity and mortality.

The field of neutropenic fever is becoming more bumpy for every hematologists and hemato-oncologists due to MDR organisms, atypical infections esp viral and fungal with novel immunotherapies and alternative

> modes of HSCT and also due to co-existing non infectious inflammatory conditions like CRS/ICANS etc.

absolute neutrophil count is less than 500 cells per cubic millimetre. It is a medical emergency commonly observed in patients receiving chemotherapy, radiation therapy, or undergoing bone marrow or stem cell transplantation. The condition results from the body's decreased ability to fight infections due to low neutrophil levels.

DR AVINASH

KUMAR SINGH

PHMRI and Patna

Hematology Clinic,

The most frequent causes of neutropenic fever include chemotherapy- or radiationinduced myelosuppression, cytopenia following hematopoietic stem cell transplantation or other cellular therapies, and bone marrow infiltration by malignant cells. It may also occur in patients with bone marrow failure syndromes or certain autoimmune disorders that suppress marrow function. Risk factors such as recent chemotherapy or radiation therapy, prolonged neutropenia (especially with counts below 100 cells/mm³), and the use of central venous catheters significantly increase vulnerability to infection.

In assessing patients, nurses must monitor vital signs frequently and observe for early indicators of infection. A thorough physical examination is essential to detect potential infection sites, including the skin, respiratory tract, and urinary system. Management involves initiating empirical broad-spectrum antibiotics within the first hour of fever onset, as any delay can lead to rapid deterioration. Nurses should also help evaluate the need for growth factors such as granulocyte-colony stimulating factor (G-CSF) to promote neutrophil recovery.

Education and collaboration are equally

6TH - 9TH NOVEMBER, 2025 ● HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

ISHBT-EHA finding new ways to tackle hemoglobinopathies

EMATOLOGISTS of repute from India and Europe captivated an audience of hematology scholars with their in-depth research presentations on hemoglobinopathies during a joint session on thalassemia, organized by the European Hematology Association and the Indian Society of Hematology and Blood Transfusion (ISHBT) during Haematocon-2025 in Lucknow on Saturday.

Deliberating on 'Diagnosis of Hemoglobinopathies – The Indian Perspective', Tuphan Kanti Dolai, secretary ISHBT, said hemoglobinopathies constitute one of the most common inherited disorders in India, posing a major public health challenge due to their high prevalence and genetic

India is home to nearly 10 distinct types of hemoglobinopathies, with varying regional and ethnic distribution patterns, he said. Prof Dolai said thalassemias and hemoglobinopathies differ in their genetic defects and clinical manifestations while thalassemias are caused by a quantitative defect, hemoglobinopathies result from qualitative defects. The prevalence of hemoglobinopathies in India is significant with varying degree, Beta-Thalassemia (2.9–4.6%), Sickle Cell Disease (5–40%), HbE diseases (3–50%), Hemoglobin D (2%), Alpha-Thalassemia (3–18%)

Each year, approximately 12,500 children are born with thalassemia, and the estimated affected population exceeds 1.5 lakh. The projected thalassemia population in India could reach 2.75 lakh by 2026, with one child born every hour with the disorder. Accurate diagnosis forms the cornerstone of prevention and management. Various methods for detecting hemoglobinopathies include Hemoglobin electrophoresis, High-Performance Liquid Chromatography, Capillary Zone Electrophoresis, Molecular methods and point-of-care testing. Presenting an 'Overview of Pathophysiology and Management of Beta Thalassemia,' Dr. Miguel R. Abboud from the American University of Beirut, Lebanon, highlighted the evolving therapeutic landscape for the disorder

Dr. Abboud noted that blood transfusions and iron chelation continue to remain the cornerstone of thalassemia management. Bone marrow transplantation, he said, plays a major role in treating beta thalassemia and is now being expanded to include haploidentical donors, widening the

Dr. Abboud also emphasized the promise of gene therapy and gene-editing technologies, which have shown highly successful outcomes, though accessibility remains a challenge in many regions. The introduction of novel agents such as Mitapivat and Luspatercept has significantly improved hemoglobin levels in non-transfusion-dependent thalassemia (NTDT) and reduced transfusion requirements in transfusion-dependent thalassemia (TDT). He added that several other promising agents are currently in active clinical trials, signaling a hopeful future for patients with beta

Similarly, Erfan Nur, Consultant hematologist and transplant physician of Amsterdam UMC, Sanquin Research, made his presentation titled 'Allogenic HCT in hemoglobinopathies, Whom, when and how to transplant' said Hematopoietic cell transplantation (HCT) is guided by the severity of the disease, with myeloablative conditioning regimens remaining the standard approach for children, yielding good event-free and overall survival rates.

Serotherapy, an important component of rejection prophylaxis, is widely accepted, using agents such as antithymocyte globulin (ATG) or alemtuzumab. However, outcomes differ with age - adolescents and adults experience higher mortality following myeloablative regimens, said Dr. Nur. ISHBT President elect Brigadier Dr Tathagat Chatterjee and prominent hematologist Dr Deepak Mishra moderated

to hemolytic anemia

Laboratory approach

HE laboratory approach to hemolytic anemia begins with confirming that hemolysis, or premature destruction of red blood cells, is truly occurring. This confirmation is based on two broad types of evidence: signs of increased red cell destruction and the bone marrow's compensatory response. Laboratory findings such as elevated serum lactate dehydrogenase (LDH) and increased unconjugated bilirubin suggest heightened red cell breakdown. A marked decrease in serum haptoglobin is a highly specific indicator, as haptoglobin binds to free hemoglobin released during cell destruction. In cases of intravascular hemolysis, urine may show the

> presence of hemoglobin or hemosiderin, reflecting ongoing or chronic red cell destruction.

The bone marrow responds to hemolysis by increasing red cell production, which is seen as a raised reticulocyte count or a high reticulocyte production index. A peripheral blood smear provides further evidence, often showing polychromasia, which represents larger,

Lady Hardinge Medical

like thalassemia.

bluish, immature red cells known as reticulocytes. Once hemolysis is established, the next step is to identify its underlying cause through targeted investigations. The complete blood count and peripheral smear are essential initial tools, as red cell morphology offers crucial diagnostic clues. The presence of spherocytes suggests autoimmune hemolytic anemia or hereditary spherocytosis, while fragmented red cells, or schistocytes, indicate microangiopathic hemolytic anemia such as thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, or disseminated intravascular coagulation. Bite cells and Heinz bodies point toward oxidative injury, as seen in glucose-6-phosphate dehydrogenase (G6PD) deficiency, and sickle cells are diagnostic of

sickle cell disease. Target cells, although nonspecific, may be seen in hemoglobinopathies

The direct antiglobulin test (Coombs test) is a pivotal investigation that distinguishes immune-mediated hemolysis from non-immune causes. A positive test indicates antibodies or complement coating the red cells, as seen in autoimmune hemolytic anemia or transfusion reactions. A negative result points to intrinsic defects such as membrane or enzyme abnormalities, or mechanical destruction. Subsequent investigations are guided by these findings; tests like osmotic fragility or EMA binding for membranopathies, G6PD assays for enzymopathies, hemoglobin electrophoresis for hemoglobinopathies, and ADAMTS13 or coagulation studies for microangiopathic processes. For suspected paroxysmal nocturnal hemoglobinuria, flow cytometry for CD55 and CD59 is confirmatory.

6TH - 9TH NOVEMBER, 2025 ● HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

How should we approach bone marrow metastasis

ONE marrow is a blood rich soft connective tissue in the cancellous space of bone and cavity of long bone marrow and is an essential source of hematopoietic cell production. The rich blood supply of marrow provides favorable conditions for tumor cell proliferation and growth. It is one of common organs to be involved by tumors that metastasize via blood stream.

Term 'Metastasis' was first recorded in Greek writing in 1580 AD, means change of place, order, nature of cells (migration or transition). Metastasis refers to ability to leave a primary tumor through circulation toward the distant tissue and form a secondary tumor the tumor cells interact with bone marrow microenvironment to survive and grow, this microenvironment is called "Metastatic niche: An environment rich in growth factors, cytokines. chemokines and signaling molecule for survival and growth of tumor cell is provided by metastatic niche. This is called Paget "Seed and Soil" theory and states that tumor metastasis entails a series of interactions between the tumor cells and stromal cells. Disrupting these reactions can serve as therapeutic intervention for bone metastasis.

In adult tumor metastasizing to bone marrow are CA breast, Lung, prostate, kidney, thyroid. In children neuroblastoma, rhabdomyo-

DR SAVITRI King George Medical University, Lucknow

sarcoma, Ewing's o sarcoma, Wilm's tumor and germ cell are tumors metastasizing in marrow. Once marrow metastasis is detected the survival rates drastically declines.

Clinical presentation in suspected marrow metastasis is unexplained anemia, hemocytopenia, fever, bone pain, abnormality on imagng studies, pathological fracture, hypercalcemia and also may be any combination of these features. For diagnosis clinical, radiological investigation, CBC, PS, biochemical parameter, bilateral bone marrow aspirate/ bone marrow biopsy with IHC, and ancillary test such as cytogenetic, molecular tests are mandatory to pick up early deposit in marrow. The diagnosis of metastatic involvement of bone marrow has profound effect on prognosis and treatment. Accurate, diagnose of tumor metastasis requires integration of clinical, imaging, laboratory findings, results of IHC cytogenetics and molecular studies.

The vast growth in research on metastasis in the past decade has yielded an unprecedented wealth of information on the intrinsic and extrinsic tumor mechanism determining the metastatic behavior. However, integrating and applying new knowledge-oriented development of metastatic-oriented anticancer drugs are required to thwart the development of metastatic disease at any stage of |devel-

Understanding ICANS: A major challenge

PROF UDAY

MMUNE Effector Cell-Associated Neurotoxicity Syndrome (ICANS) is a common complication of Chimeric Antigen Receptor T-cell (CAR-T cell) therapy and, less frequently, of bispecific antibody therapy. It is a neuropsychiatric syndrome that typically occurs due to cytokinemediated inflammation following cytokine release syndrome (CRS), although it may also occur

Department of Stem independently of CRS. ICANS most often develops

between days three and 10 after cell infusion. The reported incidence ranges from 20% to 70%, depending on the CAR-T product used, with severe cases occurring in 20–30% of patients. It is more frequent with CAR-T constructs utilizing CD28 as a costimulatory domain and is particularly associated with Axicabtageneciloleucel and Brexucabtageneautoleucel. Risk factors include higher CAR-T cell doses or peak expansion, greater disease burden, and preexisting neurological comorbidities.

The exact pathophysiology of ICANS re-

mains incompletely understood. It is thought to result from endothelial activation and bloodbrain barrier disruption due to elevated cytokine levels. This increased endothelial permeability leads to cerebral edema and associated neurotoxicity.

Clinical manifestations typically include encephalopathy with altered mental status and varying levels of consciousness, up to coma. Other features may include hallucinations (visual or auditory), seizures, aphasia,

agraphia, tremor, and headache. Laboratory findings often reveal cytopenias, elevated inflammatory markers, and high circulating levels of proinflammatory cytokines. Neuroimaging may demonstrate cerebral edema, and EEG frequently shows diffuse slowing consistent with encephalopathy, occasionally with seizure activity.

Management involves corticosteroids and supportive care, including seizure prophylaxis and measures to reduce cerebral edema. With appropriate treatment, symptoms typically resolve within 7–10 days of onset.

SCD: Urgent unmet need for spinal fractures

(SCD) is associated with spinal pathologies including vertebral fractures and infections. The pathophysiology of spinal fractures is speculated to be multifactorial, including ischemic insult due to microvascular infarction; compensatory medullary expansion and cortical thinning due to anemia; and low bone

density due to malnutrition. These conditions may occur

starting in childhood and cause substantial morbidity throughout life. Newonset fractures cause acute pain, which may frequently be masked by multifocal pain experienced during recurrent vasoocclusive crises. It is common to have multiple spinal fractures, which can contribute to chronic pain through a combination of bone pain, spinal deformity and central

Despite the known elevated risk, spinal fractures remain under-diagnosed among individuals living with SCD. Additionally,

DR MIHIR GUPTA Department of Neurosurgery, Yale Medicine, USA

when the diagnosis of spinal fractures is delayed, the treatment window is missed for interventions such as vertebral cement augmentation that could reduce pain.

There is an urgent unmet need to investigate the pathophysiology and epidemiology of spinal involvement in SCD. This effort should start with developing safe and cost-effective imaging modalities such as low-dose x-rays for early detection of spinal involvement. Evi-

dence should be collected from large cohorts to develop clinical guidelines for screening and diagnosis.

In practice, clinicians must have a high degree of suspicion for spinal pathologies starting in early life. Multidisciplinary care is critical; spinal specialists should be involved in the care of SCD patients. Bone health should also be emphasized through nutrition optimization and bone density screening, guided by primary care physicians, endocrinologists and nutrition spe-

BULLETIN

6TH - 9TH NOVEMBER, 2025 ● HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

Primary amyloidosis: treatment and challenges

DR UDAY

Armed Forces

Medical College

AL amyloidosis

approach that

precise

diagnosis,

therapy,

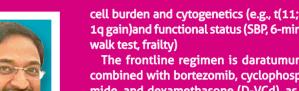
risk-adapted

and vigilant

requires a

YANAMANDARA

L amyloidosis is a complex, multisystem disorder caused by misfolded immunoglobulin light chains produced by clonal plasma cells. These misfolded proteins aggregate into amyloid fibrils, depositing in organs and leading to dysfunction. Accurate diagnosis, typing, and risk stratification are essential for effective management.


The disease originates from a plasma cell clone producing unstable light chains. These undergo misfolding and aggregation into amyloid fibrils. Other contributors include serum amyloid A, SAP, GAGs, and transthyretin. Importantly, not all amyloidosis is AL or ATTR; hereditary variants and ALECT2 must be considered.

Correct amyloid typing is critical for diagnosis. For example, 29% of patients with ATTR amyloidosis may have incidental MGUS, leading to misclassification. ALECT2, the third most common acquired amyloidosis, predominantly affects renal function and is prevalent in Indian, Mexican, and Middle Eastern populations. Diagnostic tools include imaging (CMR, PET/CT, SAP scans), biomarkers (NT-proBNP, FLC), and novel assays like AmyLite™, which detects λ amyloid FLC with high specificity.

100000 0000000 000000

Outcomes in AL amyloidosis depend on organ involvement, clonal characteristics, and treatment response. Key prognostic indicators include renal tidisciplinary approach that integrates precise diagnosis, staging (based on eGFR and proteinuria), cardiac markers (GLS, NT-proBNP, CMR-derived ECV), bone marrow plasma remains the cornerstone of frontline treatment.

F Jucknow

combined with bortezomib, cyclophospha-

response, cytogenetics, and organ progression. Options include retreatment with daratumumab-based regimens (DVD, DRD, DPD), venetoclax for t(11;14) translocation, IMiD and PI-based combinations (RD, IRD, KD), ASCT for eligible patients.

Novel agents under investigation include bispecific antibodies (Teclistamab, Elrantamab), CAR-T therapies (NXC-201, FKC-288), anti-fibril monoclonal antibodies (CAEL-101, NEOD001), Light chain stabilizers.

These aim to eliminate plasma cell clones, remove soluble aggregates, and clear amyloid deposits. Achieving hematologic CR or near CR is the primary goal. FLC mass spectrometry (FLC-MS) negativity correlates with improved survival. MRD negativity is emerging as a new benchmark. AL amyloidosis requires a mul-

1008000 8000088 0088

risk-adapted therapy, and vigilant supportive care. D-VCd

cell burden and cytogenetics (e.g., t(11;14), 1q gain)and functional status (SBP, 6-minute

The frontline regimen is daratumumab mide, and dexamethasone (D-VCd), as per the ANDROMEDA trial. For patients with advanced cardiac disease (Stage IIIb/c), daratumumab monotherapy or dose-adjusted regimens are preferred. ASCT retains a role in selected high-risk patients, especially those with early relapses or adverse cytogenetics.

Relapse management depends on prior

sincerity: The secret to a successful meet great medical conference is not just an event, it's a living experience bringing science, collaboration, and camaraderie together. A successful conference rests on meticulous planning, strong partnerships, and a personal touch at every stage. Vision and Early Planning: Work begins a year in advance. Define a theme that captures current scientific priorities. Key elements include budgeting expenses and income, driving financial support, designing the scientific program, publicity, and hospitality. For larger conferences,

When science meets

RAJESH SHARMA Director, MICE Ideas Pvt. Ltd. and Nucleus

CONFERENCE GLIMPSES

Pre-conference visibility for sponsors is

early team alignment ensures every committee

vital. Industry partners today seek meaningful engagement through academic symposia, faculty collaborations, exhibition booths, product launches, and online sessions. Regular networking

works in synergy toward

Pre-conference Col-

laboration and Visibility

among organizers, sponsors, and faculty sustains momentum and clarity

Academic Value and CME Accreditation: Publishing the full scientific program three months in advance helps delegates plan travel and schedules, ensuring higher participation. Apply for CME accreditation early and feature it prominently

Partnering with a PCO: A capable PCO shoulders operational workload, allowing the committee to balance professional practice, family, and duties. The right partner ensures precision, continuity, and a stress-free experience throughout

Onsite Experience: Onsite efficiency including smooth registration, punctual sessions, helpful volunteers, and clear signage defines participant satisfaction. Keep delegates engaged with live polling, case-based discussions, and interactive Q&As. Post-event gratitude, highlights, certificates, and feedback sustain relationships and

Gastronomy: Food reflects hospitality. Plan menus to suit attendee mix, regional tastes, and dietary sensitivities. Thoughtful gastronomy turns breaks into opportunities for networking and rejuvenation.

Post-Conference Connection: After the applause fades, relationships remain. Share highlights, recordings, and feedback promptly. Gratitude builds trust for future editions.

Extending the Conference Beyond Its Walls A conference's true impact lies in public benefit. Share key outcomes: advances, health messages, and insights through simple, accessible media. It reflects transparency, social respon-

"Conferences succeed when science meets sincerity, and every participant feels seen, valued,

sibility, and the humane purpose of medicine.

6TH - 9TH NOVEMBER, 2025 ● HOLIDAY INN LUCKNOW AIRPORT, AN IHG HOTEL, UTTAR PRADESH, INDIA

WALKATHON RAISES AWARENESS ON BLOOD DISORDERS AT HAEMATOCON-2025

UCKNOW witnessed a spirited Walkathon on Saturday morning as part of Haematocon-2025, the annual conference of the Indian Society of Hematology and Blood Transfusion. The event aimed to raise public awareness about blood disorders, including thalassemia, haemophilia, sickle cell disease and blood cancers.

The Walkathon started from the Chancellor Club and saw enthusiastic participation from leading hematologists across India, international experts, students, and members of various patient groups. Among them were representatives from thalassemia and haemophilia patient associations, who walked alongside doctors and researchers to spread the message of hope and awareness.

The Walkathon was led by Haematocon-2025 Organising Secretary Prof

SP Verma, Co-Organising Secretary Prof Rashmi Kushwaha in the presence of ISHBT President Sarmila Chandra, President (Elect) Brig Dr Tathagata Chatterjee, ISHBT Secretary Prof Tuphan Kanti Dolai, Prof Manoranjan Mohapatra, Dean ICHProf HP Pati, Secretary ICH Prof RK Jena and other delegates of the conference.

Participants carried placards and ban-

ners with messages promoting early diagnosis, blood donation, and access to advanced treatments. The walk also served to remind the public of the growing burden of blood-related diseases and the need for greater attention to hematological care in hospitals.

Speaking at the event, senior doctors said that improving awareness is key to

early detection and better outcomes for patients. They stressed the importance of ensuring that modern treatments for blood disorders and cancers reach people in every part of the country, not just big cities.

The Walkathon also highlighted the commitment of the hematology community to strengthen healthcare infrastructure and make treatment more affordable and accessible. Organizers said the event symbolized unity between medical professionals, patients, and caregivers in their shared fight against blood diseases.

As the Walkathon concluded, participants expressed optimism that such initiatives will help build a stronger understanding of blood health among the public. The event captured the spirit of Haematocon-2025—to advance hematology through awareness, collaboration, and compassion.

